Dimension   차원

(2024-09-16)

0 차원, 무차원, 1 차원, 2 차원, 3 차원, 4 차원, n 차원, N 차원, 기본 차원, 다차원, 차원 동차성 법칙


1. [수학]  차원 (Dimension, 次元)데이터(숫자)가 존재하는 공간의 구조적인 특징을 설명함

  ㅇ ( 좌표 공간의 차원 )

     - 좌표공간에 점을 나타내기 위해 필요한 좌표의 성분 수 (독립변수의 수)

  ㅇ ( 벡터 공간의 차원 )

     - 기저 벡터의 수 : 벡터 부분공간기저(Basis)를 이루는 원소 수
        . (기저 벡터 : 주어진 벡터공간생성할 수 있는 기저 요소를 이루는 벡터들)

     - 例)
        . 1) R0 => 영차원 부분공간 (차원 = 0)
        . 2) Rn => n차원 공간 (차원 = n)
        . 3) n 차원 벡터 = n개의 원소를 갖는 벡터 = n 순서쌍(n-tuple)

     - 차원 표기 : dim(V)
        . 例) dim(Rn) = n, dim(R0) = 0

  ㅇ ( 확률,통계학 )
  
     - 데이터 변수 or 변량(공통의 측정 방법으로 얻어지는, 같은 성질을 갖는 값들) 종류의 갯수
        . 한편, 통계적 분석에서는, 이들 변량 간의 관계를 밝히는 일을 주로 함
   
     - 例) (키,몸무게,성별) : 3 변수 데이터

  ※ 결국, 수학적 공간 상에서, 
     - 차원 = (좌표 공간에서, 좌표 성분의 수) = (벡터 공간에서, 기저 벡터의 수)
            = (확률 공간에서, 데이터 변수의 수)


2. [물리]  차원 (Dimension, 次元)물리량의 종류(물성) 및 상태를 나타내는 척도

  ㅇ (물리량 차원)  기본 차원 (Primary Dimension, Fundamental Dimension)
     - 기본 물리량 (Fundamental Quantity)의 차원              ☞ SI 단위계기본 단위 참조
        . 질량 {M}, 길이 {L}, 시간 {T}, 온도 {Θ}, 전류 {I}, 물질량 {N}, 량(광도) {C}

     - 기타 물리량 (유도량, Derived Quantity)의 차원
        . 기본량으로부터 물리법칙에 의해 유도됨
        . 기본량을 바탕으로 {M}α{L}β{T}γ와 같이 표현됨
           .. α,β,γ : 차원의 차수
        . 例) 가속도 차원 = {L T-2}, 의 차원 = {M L T-2}, 압력의 차원 = {M L-1 T-2},
              에너지 차원 = {M L2 T-1}

     - 한편, 차원은 단일하나, 이를 표현하는 단위계는 다양함      ☞ 단위, 단위계, SI 단위계 참조
        . 例) 속도의 차원 {L T-1} 및 다양한 단위 ([m/s],[km/hr],[mile/hr] 등)

     * 통상, 역학에서는, 
        . 길이 {L}, 시간 {T}, 질량 {M} 정도 만으로도, 대부분의 물리량을 취급이 가능

  ㅇ (물리량 차원의 동차성)  차원 동차성 법칙 (Law of Dimensional Homogeneity)  
     - 물리 현상을 나타내는, 방정식의 모든 덧셈 항의 차원은 서로 같아야 함

  ㅇ (공간 차원의 수)  운동의 위치 기술에 필요한 수치 또는 좌표의 수
     - 물리공간 내에서 운동하는 질점의 위치를 나타내는데 필요한 개수
        . 例 1) 한 점 또는 유한 개의 점은 0차원으로 기술이 가능
        . 例 2) 직선상의 점은 1차원
        . 例 3) 면적 상의 점은 2차원
        . 例 4) 비행물체는 3차원
        . 例 5) 시공간은 4차원 등

  ㅇ (공간 차원의 제한)  자유도 (Degree of Freedom)
     - 계의 상태(위치 등)를 기술하는데 필요한 최소개 독립변수들의 수
        . 물리계의 모든 상태(위치 등)를 완전히 기술하기위한 독립 좌표들의 최소 수
           .. 그러나, 구속조건이 있을 경우, 자유도는 구속조건의 수 만큼 감소

     - 차원의 구속 (Constraint)
        . 궤도 등으로 움직임이 제한되는 경우, 차원의 수를 줄일 수 있음


3. [신호처리]  차원 (Dimension, 次元)신호나 부호의 구조적 특징을 보여줌

  ㅇ (신호 공간 상의 차원)
     - 신호 공간에서 독립적인 기저 신호로 표현 가능한 수           ☞ 신호의 기하학적 표현 참조
        . 독립 기저의 선형결합으로 공간 표현 
           .. 이때, 기저 선택이 유일하지 않음(무수히 많을 수 있음)

  ㅇ (블록 부호 상의 차원)
     - 부호화 하기 전에 원 정보를 담은 메세지 비트의 길이             ☞ 블록 부호 용어 참조
New
[벡터공간 특성]1. 기저   2. 차원   3. 랭크   4. 생성   5. 1차 결합   6. 1차 독립  

[물리량]1. 물리량   2. 차원   3. 단위   4. 좌표   5. 자유도   6. 구속 조건  

  1. Top (분류 펼침)      :     1,593개 분류    6,525건 해설

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"