Equation of Motion   운동 방정식

(2022-07-30)

1. 운동 방정식 (Motion Equation) 

  ㅇ 물체에 을 줄 때, 시간에 따라 물리량(위치,속도,가속도)의 변화(운동 상태)를 기술하는 방정식

  ㅇ 한편, 파동의 관점에서 움직임에 대한 방정식은,  ☞ 파동방정식, 슈뢰딩거 방정식 등 참조


2. 기초적인 운동 방정식의 유도

  ㅇ 직간접적으로, 뉴튼의 운동법칙(뉴튼의 제2법칙)인,
     - ,질량,가속도 관계식 "F = ma"으로부터 유도됨

  ㅇ 표현 형태는,
     - 통상, ,질량,가속도 관계식 F(x,v,t) = ma 로써 표현되거나,
     - 또는, 위치,속도,시간으로 표현된 가속도에 관한 식 a(x,v,t) = F/m 으로도 표현 가능

  ㅇ (일반 표현식)  :  
[# m\frac{d^2\mathbf{r}}{dt^2} = \mathbf{F}(\mathbf{r},\mathbf{v},t) #]
- 여기서, F질량 m인 입자에 가해지는 으로써, 위치,속도,시간함수 임 - 수학적으로, 2계 미분방정식 형태 임 - 이 식으로부터, 시간에 따른 위치(변위),속도 등을 결정(풀이)하기 위해, 적분되어야 함 3. 최종적인 운동 방정식의 유도 ㅇ 최종적으로 유도되는 운동 방정식들은, - 처음의 운동 방정식에서 (외부력,복원력 등)을 상쇄 또는 다른 물성 변수로 대체시킴 ㅇ 즉, 일정 값을 갖는 을, 고려대상에서 빠지게 하고, - 다만, 중에서, 마찰력저항력/감쇠력은 제외하고, - 주로, 물체의 성질(질량,탄성 등) 및 변위,속도,가속도,주파수,초기조건 등 만으로 표현 - 결국, 위치,속도 등에 의해 운동 예측이 가능한 방정식 형태를 만듬 ㅇ 운동 방정식의 수 : 자유도 - 주어진 문제를 풀기 위해서는 자유도와 똑같은 수의 방정식이 필요함 4. 운동 방정식의 풀이운동 방정식의 풀이는, - 운동 방정식을 만족하는 시간 t의 함수를 구하는 것 - 결국, `운동예측하는 것`이고, 이는 `2계 미분방정식의 해를 구하는 것`임 ㅇ 통상, 여러 좌표계(직각좌표계,극좌표계,원통좌표계 등) 중 하나를 사용하여, - 운동 방정식을, 스칼라 방정식 형태로 표현하여, 이를통해 풀이를 진행함 ㅇ 운동 방정식의 해의 형태로는, - 통상, 일반해로 표현되나, - 이로부터 초기조건에 따라 구체적인 운동(궤적)을 보여주는 해(특수해)가 결정되어짐 ㅇ 고전 역학에서는, - 물체의 운동 상태(위치 및 운동량)에 대해, 운동 방정식으로 완벽히 묘사 가능하다고 봄 - 즉, 미래 예측이 완전히 가능하다고 봄 5. 운동 방정식의 例병진 운동 : 직선 또는 곡선으로 움직이는 운동 - (힘 평형) ∑모든 외력 F = ma (F: , m: 질량, a: 가속도) . 가속도 사이의 관계식 - 주요 관련 변수 : 질량,가속도,속도,변위 등 ㅇ 회전 운동 : 고정 축 둘레의 운동 - (모멘트 평형) ∑모든 외력 T = Iα (T: 토크, I: 관성능률, α: 각가속도) . 각가속도토크 사이의 관계식 - 주요 관련 변수 : 관성능률,각가속도,각속도,각변위 등 ㅇ 진동 운동 : 한정된 공간(계)에서의 주기적인 떨림 - 운동 방정식 :
[# \ddot{φ}+ω^2_0\;φ=0 #]
. 진동 변위 Ψ와 고유주파수 ωo와의 관계식으로 표현됨 ☞ 조화진동 운동방정식 참조 - 주요 관련 변수 : 공진주파수,강성도,질량,변위 등 ㅇ 참고 例) ☞ 자유낙하운동, 포물선운동, 단순조화운동방정식, 2차 시스템 등 참조

운동의 표현
   1. 질점   2. 변위   3. 속력,속도,체적속도   4. 가속도   5. 운동 방정식  
일반역학
   1. 라그랑지안,해밀토니안   2. 일반화 좌표   3. 달랑베르 원리   4. 운동방정식   5. 해밀턴 원리  


Copyrightⓒ written by 차재복 (Cha Jae Bok)       편집이력      기술용어해설후원
"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"