Function Mapping Transformation   함수 사상 변환

(2020-05-01)

변환/사상/함수, 변환 매핑 함수 연산 투영 코딩 비교, 대응 관계


1. 변환, 매핑, 함수, 연산, 투영, 코딩 비교

  ※ 이들 용어 모두 사실상 거의 같은 의미를 갖으며,
     - 수학/과학/기술 각 분야에서 관례적으로 용어를 각각 선호하며,
     - 특정 의미를 강조하며 사용되고 있음

  ㅇ (분야별 공통적인 의미)
     - 공간 간에 대응관계
     - 이 공간에서 저 공간으로 갈 때, 내용상 동등하나 표현은 달라짐
     - 1 이상의 대상들을 결합시켜 또다른 결과를 내놓는 것

  ㅇ (분야별 선호되는 의미)
     - 선형대수학에서는, `함수`,`사상` 보다는 `변환`이라는 용어를 주로 사용
        . 입력과 출력 모두가 벡터 또는 행렬인 경우에 주로 변환이라고 함
     - 기하학에서는, `함수` 보다는 `사상`,`변환`,`투영` 이라는 용어를 주로 사용
     - 변환은, 주로 이를통해 해석이 용이해지거나 취급이 단순해지게 하는 것을 말함
     - 함수는, 多:1 또는 1:1과 같이 1개 결과 만을 내놓는 것일 때를 말함
     - 매핑은, 수학적으로는 함수와 비슷하나, 함수보다는 더 일반적인 개념으로 봄
     - 연산은, 타 공간이 아닌, 자신이 속해있는 공간 그 자체로 보내지는 것을 말함
     - 투영은, n 차원에서 (n-1) 차원 미만으로 차원을 단순화시키는 것을 말함
     - 코딩은, 1개 부호어(부호화 단위)로써 대응되는 심볼에 할당하는 것을 말함


2. 수학적으로, 다음과 같이 다양한 표현이 가능

  ㅇ f는 집합 X에서 집합 Y로의 함수
      집합 X의 각 원소 x가 집합 Y에 있는 하나의 특별한 원소 f(x)로의 사상
      
     - 여기서, 값 f(x)는 함수 f가 만드는 x의 상(image)이라고함
        

        . 정의역   : 집합 X  
        . 공역     : 집합 Y
        . f의 치역 : 정의역에 있는 모든 점들의 상(image)으로만 이루어진 공역부분집합벡터 x로부터 벡터 y로 보내는 변환
      

  ㅇ 두 집합 간 대응관계 종류
      

변환 매핑 함수 연산 투영 코딩
   1. 변환 매핑 함수 연산 투영 코딩 비교   2. 변환 (Transformation)   3. 사상 (Mapping)   4. 연산 (Operation)   5. 투영 (Projection)  


Copyrightⓒ written by 차재복 (Cha Jae Bok)       기술용어해설후원
"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"