Mapping, Morphism   매핑, 맵핑, 사상 (Mapping), 사상 (寫像)

(2024-08-01)

사상 , Mapping , 사상


1. 매핑 (Mapping), 사상 (寫像, Morphism)

  ㅇ 두 집합의 원소들 간의 대응관계
     
  ※ [수학]  매핑, 사상이란? 
     - 함수와 비슷하나, 함수보다는 더 일반적인 개념으로 봄
        . 수학적 구조를 이해하고 분석하는 데 중요한 역할을 하며, 
        . 함수론, 대수학, 해석학 등 다양한 수학 분야에서 활용됨

     - 특히, 함수는, 그 결과가 오직 하나뿐인 원소로의 대응 관계를 뜻함
        . 즉, 함수는 일대일 1:1, 다대일 多:1에 한정됨      ☞ 단사함수, 전사함수, 전단사함수 참조

     - 특히, 사상 (Morphism) 이라고 하면,      ☞ 동형사상, 준동형사상, 자기동형사상 참조
        . 변환/사상에서, 대수 구조를 그대로 보존하는 경우를 말함
           .. 즉, 변환(함수 등) 전후에도 `수학적 구조`를 그대로 보존함을 추상화한 것
        . 어원 : `형식/형태(morphe)`를 의미하는 그리스어에서 유래

  ※ [기타분야]  ☞ 아래 4.항 (분야별 매핑의 의미) 참조


2. `사상(Mapping)`, `함수(Function)`, `변환(Transformation)`의 비교

  ※ ☞ 함수 사상 변환 참조
     - 세 용어 모두 사실상 같은 의미를 갖음 : (공간 간에 원소들의 대응관계)
        . 수학 각 분야에서 관례적으로 세 용어를 각각 선호하며 사용하고 있음


3. 매핑의 종류

  ㅇ 일대일 매핑 (one-to-one mapping)  : 원소 하나에 다른 원소 하나가 대응
  ㅇ 일대다 매핑 (one-to-many mapping) : 원소 하나에 여러 다른 원소들이 대응
  ㅇ 다대일 매핑 (many-to-one mapping) : 여러 원소들에 원소 하나가 대응
  ㅇ 다대다 매핑 (many-to-many mapping): 여러 원소들에 여러 다른 원소들이 대응

       

  ※ [참고] ☞ (정의역,치역,공역),(단사함수,전사함수,전단사함수) 참조 
        

4. 분야별 매핑의 의미

  ㅇ [코드(부호)화]  
     - 부호어(코드어,Codeword)로 불리우는 코드벡터로의 사상(寫像)
        . 즉, 주어진 응용에 적합토록 코드(부호)의 속성효율적코드로 변환시킴

     - (용어 유의)      `부호화(Encoding)`를 수학적 용어로는 `매핑(Mapping)` 이라고 말함

     - (부호화 응용 例)  소스 부호화, 채널 부호화, 암호화, 선로 부호화 등

  ㅇ [ 전송방식 / 동기식 다중화 분야 ] 
     * ☞ `동기식다중화 매핑` 참조
        . 서로 다른 계위체계 신호 간의 적응 과정
           .. 다중화시에 다른 신호계위 체계(PDH, SDH, OTH 등)를 갖는 경우에,
           .. 낮은 계위체계의 하위 종속신호를 높은 계위체계의 상위 신호에 적응하여 맞추는 과정

  ㅇ [ 컴퓨터 그래픽스 분야 ]  매핑(寫像)
     - 컴퓨터 그래픽스에서 한 좌표계에서 다른 좌표계데이터(픽셀 등)를 이동시키는 행위

변환 매핑 함수 연산 투영 코딩
   1. 변환 매핑 함수 연산 투영 코딩 비교   2. 변환 (Transformation)   3. 사상 (Mapping)   4. 연산 (Operation)   5. 투영 (Projection)  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"