Controllable, Observable   가제어성, 가제어, 가관측성, 가관측

(2022-08-29)

1. 가제어성 (Controllable, Controllability)

  ㅇ 가제어성
     - 유한 시간 내 입력을 가하여, 임의의 초기 상태를 원하는 최종 상태로 변화시킬 수 있음
     - 즉, 유한 시간 내 입력에 의해, 내부 상태를 완전히 지배할 수 있는 경우
     - 입력에 의해, 동적 내부 상태를 완전히 지배 가능

  ㅇ 가제어성 행렬 (Controllability Matrix)
     - 동적 방정식에서, 다음과 같은 n x n 행렬 
         
[# \mathbf{U}_c = [\mathbf{B} \quad \mathbf{A}\mathbf{B} \quad \mathbf{A}^2\mathbf{B} \quad \cdots \quad \mathbf{A}^{n-1}\mathbf{B}]#]
ㅇ 가제어성이기 위한 필요충분조건 - 가제어성 행렬식 {#\det(\mathbf{U}_c)#}가 0 이어서는 안됨
[# \det(\mathbf{U}_c) = |\mathbf{U}_c| = |\mathbf{b} \quad \mathbf{A}\mathbf{b} \quad \mathbf{A}^2\mathbf{b} \quad \cdots \quad \mathbf{A}^{n-1}\mathbf{b}| \neq 0 #]
2. 가관측성 (Observable, Observability) ㅇ 가관측성 - 유한 시간 내 출력을 관측하여, 이전 어떤 시간상태 변수 값을 완전히 알아낼 수 있음 - 출력에 의해, 동적 내부 상태를 완전히 관측 가능 ㅇ 가관측성 행렬 (Observablity Matrix) - 동적 방정식에서, 다음과 같은 n x n 행렬
[# \mathbf{U}_o = [\mathbf{C} \quad \mathbf{C}\mathbf{A} \quad \mathbf{C}\mathbf{A}^2 \quad \cdots \quad \mathbf{C}\mathbf{A}^{n-1}] #]
ㅇ 가관측성이기 위한 필요충분조건 - 가관측성 행렬식 {#\det(\mathbf{U}_o)#}가 0 이어서는 안됨
[# \det(\mathbf{U}_o) = |\mathbf{U}_o| = |\mathbf{C} \quad \mathbf{C}\mathbf{A} \quad \mathbf{C}\mathbf{A}^2 \quad \cdots \quad \mathbf{C}\mathbf{A}^{n-1}| \neq 0 #]

상태공간기법
   1. 상태 공간 기법   2. 상태공간기법 용어   3. 상태 변수   4. 상태 방정식   5. 상태 천이행렬   6. 가관측성, 가제어성  


Copyrightⓒ written by 차재복 (Cha Jae Bok)       기술용어해설 소액 후원
"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"