[정보통신기술용어해설] |
Covariance Matrix 공분산 행렬 | (2021-02-21) |
상관계수 행렬 |
1. 공분산 행렬 (Covariance Matrix), 상관계수 행렬 (Correlation Coefficient Matrix) ㅇ 2 이상의 변량들에서, 다수의 두 변량 값들 간의 공분산 또는 상관계수들을 행렬로 표현한 것 ㅇ 확률벡터의 분산 표현 => 공분산 행렬 : Var [x]2. 공분산 행렬 특징 ㅇ 공분산 행렬은
인 대칭행렬 임 - 例) 3개 변량 있으면, 3 x 3 대칭행렬 ㅇ (i,j) 요소 값은, 두 변량 xi, xj 간에 구해진 공분산 값 임 ㅇ (i,i) 요소 값은, 동일 변량 xi 자신의 분산 값인 Var[xi] 임 3. 공분산 행렬의 계산 및 해석 例)
ㅇ x1,x2 간에는, 상관성 없음 - σ12 : (0.000) ㅇ x1,x3 및 x2,x3 간에는, 같은 정도의 상관성 보임 - σ13 : (0.167) - σ23 : (0.167) ㅇ x3은, x1,x2 보다 자체 데이터 분산이 작음 - σ33 : (0.250) - σ11,σ22 : (0.333)