Information Quantitation   정보량

(2024-06-07)

정보, Information


1. 정보(량)

  ㅇ 정보는, 일견 추상적이지만, 
     - 이에대해 공학적인 설명 및 응용이 가능하려면,
     - 반드시, 측정이 가능한 (즉, 셀 수 있는) 물리량으로써,
     - 즉, 정보의 량(量)을 정의하여야 함  ☞ 아래 2.항 참조

  ※ [참고] 데이터를 정보로 변환하는 과정                ☞ 데이터, 데이터 분류, 데이터 표현 참조
     - 데이터(자료 : 단순 관찰 사실 값)  →  (가공/처리/변환)  →  정보


2. 정보의 정량화 (정보이론적 측면)

  ㅇ 정보의 가치는 당연한 사실일수록, 낮을 것이며,
  ㅇ 예측이 가능하지 않을수록, 즉 `불확실성(Uncertainty)`이 높을수록, 정보량이 많아질 것이고,
  ㅇ 정보가 예측가능한 것이라면, 정보의 가치가 없게 됨

  ※ 수학적으로, 발생 확률이 작을수록, 정보의 가치(크기)가 높아짐
     - 따라서, 정보량은 발생 확률의 반비례적인 함수이어야 됨


3. 정보량의 정의 및 단위

  ㅇ 정보량 정의 式  
     -  I(E) = log₂1/P(E) = - log₂P(E)   [bit]
        . 발생 확률 P(E)의 대수를 취하여 이에 (-) 부호를 붙인 것으로 정의함

          

  ㅇ 정보량 단위 : 주로, bit(비트)로 표현
     -  log 의 밑이  2 이면,  단위bit (비트, 실제적으로 많이 쓰이는 단위)
     -  log 의 밑이  e 이면,  단위는 nat (natural unit)
     -  log 의 밑이 10 이면,  단위는 hartley

     -  한편, 발생 확률이 1/10 이면, 1 hartley 라고 함
        .  例) 1 hartley = log10 (10) bit = log2 (10) bit = ln (10) nat
           

4. 정보량의 의미/성질/특징

  ㅇ 사건 발생 전에, 그 결과를 확신 (P=1)할 수 있으면, 정보는 없음
     - 즉, P(Ei)=1일 때, I(Ei)=0

  ㅇ 발생 확률이 낮은 사건일수록, 그 사건이 일어나면, 더 많은 정보가 얻어짐
     - 즉, P(Ei) < P(Ek)일 때, I(Ei) > I(Ek)

  ㅇ 통계적으로 독립이면, 각각의 정보량을 더하면됨 (Additive)
     - 즉, I(EiEk) = I(Ei) + I(Ek) = log₂(1/Pi) + log₂(1/Pk)

  ㅇ 정보량은 항상 양수 (0 이상)임
     - 즉, I(E) ≥ 0
        . (정보량을 정의하는 로그 함수는 항상 양수임)

  ㅇ 例)
     - 발생할 수 있는 2개 (2진) 사건 각각이, 동일 발생 확률 P(Ei) = 1/2일 때, 
        . I(Ei) = - log₂(1/2) = 1 비트이므로, 1 비트 정보량임
     - 발생할 수 있는 4개 (4진) 사건 각각이, 동일 발생 확률 P(Ei) = 1/4일 때, 
        . I(Ei) = - log₂(1/4) = log₂4 = 2 비트이므로, 2 비트 정보량임


5. [참고사항]평균적인 정보량   ☞  평균 정보량 (Entropy) 참조
     - 엔트로피 (Entropy) : 정보원이 갖는 심볼평균 정보량결합사건에서의 정보량   ☞  자기정보량, 상호정보량 참조
     - 평균 자기정보량 (Entropy) 
     - 평균 상호정보량

  ㅇ 정보의 전송 속도전송률(비트율) 참조

정보량
1. 정보량   2. 엔트로피   3. 자기 정보량, 조건부 정보량, 상호 정보량   4. 평균 상호 정보량   5. 조건부,결합 엔트로피   6. 용장도   7. 확률천이행렬  
용어해설 종합 (단일 페이지 형태)

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]          최근 편집          Copyrightⓒ 차재복